
pygrafix Documentation
Release 0.0.1

Orson Peters

May 19, 2012

CONTENTS

1 Introduction 3
1.1 Why this project? . 3
1.2 Why Cython? . 3
1.3 On what external libraries does pygrafix rely? . 3
1.4 What are the core design goals? . 3
1.5 What other features might get added? . 4
1.6 What features will not get added? . 4

2 Compiling 5
2.1 Compiling on Linux . 5
2.2 Compiling on Windows . 5

3 Disclaimer 7

4 pygrafix — General pygrafix functions 9

5 pygrafix.draw — Functions for drawing shapes 11

6 pygrafix.image — Working with image files 13

7 pygrafix.image.codecs — Managing codecs 15

8 pygrafix.resource — Managing resource locations 17

9 pygrafix.sprite — Fast sprites 19

10 pygrafix.window — Managing windows 21

11 pygrafix.window.key — Key constants 25

12 pygrafix.window.mouse — Mouse constants 29

13 Indices and tables 31

Python Module Index 33

i

ii

pygrafix Documentation, Release 0.0.1

pygrafix is a Python/Cython hardware-accelerated 2D graphics library.

Contents:

CONTENTS 1

pygrafix Documentation, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is a short introduction to pygrafix.

1.1 Why this project?

There are two major game/graphics libraries for Python out there, Pygame and Pyglet. Pygame is built ontop of the
SDL library and is very mature. It however lacks a clean interface and has serious performance issues if you aren’t
very careful about using it (and even then some things are plain impossible). It also has some great parts, mostly the
non-graphics modules are quite good. Then there is pyglet, a pure-python approach to graphics. It is very promising
and has a much cleaner API but uses an awkward bottom-left coordinate system. It is also written in pure Python code
with ctypes, which means potential performance issues can lie below the surface due to the amount of wrapping going
on. This project tries to combine the great parts of both (and other) libraries while removing the awkwardness.

1.2 Why Cython?

Cython allows the rapid development of Python to be combined with the speed of C. It is also very easy to wrap C
libraries with, resulting in great performance too. Since I already decided parts of the library will be in C Cython has
no portability drawbacks of some kind. It will run on any system capable of running Python, and produce portable
C code. If necesarry you could even ship the C code produced by Cython; this means your code base is completely
portable, even for people that can’t/don’t want to install Cython. This way they will only need Python and a C compiler
(you will most likely be shipping binaries to your end users removing the need of the C compiler too).

1.3 On what external libraries does pygrafix rely?

pygrafix currently relies on GLFW for windowing, OpenGL for graphics rendering, GLEW for more OpenGL func-
tionality and stb_image for image writing/reading. GLFW and stb_image are shipped with the source of pygrafix,
GLEW and OpenGL are not. To compile you need the developer 32-bit version of Python, a C compiler, CMake and
Cython installed.

1.4 What are the core design goals?

• Opening and using windows and recieving input

• Loading common image formats into textures

3

pygrafix Documentation, Release 0.0.1

• Loading and using fonts

• A fast 2D sprite system supporting many transformations.

• Providing clear, fast and object-oriented interfaces to all features

• Loading and playing back sound

1.5 What other features might get added?

• Particle systems

• Offscreen rendering targets

• (2D) game specific high-performance modules (fast collision, vector, etc)

1.6 What features will not get added?

• Networking

• Game-engine specific stuff

• 3D functionality

4 Chapter 1. Introduction

CHAPTER

TWO

COMPILING

Compiling pygrafix can be pretty hard for a novice, but these instructions should help you on your way.

2.1 Compiling on Linux

First you need to install the required software if you don’t have it yet. If you don’t have CMake yet (though that’s
unlikely) get it:

$ sudo apt-get install cmake

Now we need Cython. Cython can be downloaded from the repos but often is outdated. So download it from
http://www.cython.org/ and build it from source (very easy).

Now we need to compile pygrafix itself.

First you need to compile GLFW 3. GLFW 3 is currently an unstable branch of GLFW, so it’s not in the repos. This
also means that you shouldn’t install it. In order to compile GLFW3 you should go into the libs/glfw directory and
make a new directory “build”. cd into the directory and call cmake on the above directory. After that you want to call
make (BUT NOT make install):

$ mkdir libs/glfw/build
$ cd libs/glfw/build
$ cmake ..
$ make

After it’s done go back to the top directory of pygrafix and invoke the build script:

$ cd ../../..
$ sudo python setup.py install

You’re done!

2.2 Compiling on Windows

Windows doesn’t come with a C compiler, so I recommend installing GCC. This can be done by installing MinGW
through TDM-GCC (http://tdm-gcc.tdragon.net/). Make sure to get the 32-bit version, just like Python.

You’ll also need CMake, so get it from http://www.cmake.org/ (win32 installer). The same goes for Cython, get it
from http://www.cython.org/ (win32 installer).

First we need to compile GLFW:

5

http://www.cython.org/
http://tdm-gcc.tdragon.net/
http://www.cmake.org/
http://www.cython.org/

pygrafix Documentation, Release 0.0.1

> mkdir libs\glfw\build
> cd libs\glfw\build
> cmake -G "MinGW Makefiles" ..
> make

And then pygrafix itself:

> cd ..\..\..
> python setup.py build --compiler=mingw32
> python setup.py install

It might be possible that you get an error about “-mno-cygwin”. In order to fix this you must go to your python install
folder, find a file named “distutils.py” and remove all occurences of “-mno-cygwin”. There sadly is no other way.

Another thing, CMake might be giving you an error that it can not find a working GCC. I fixed this problem by opening
my MinGW install directory and copy binmake.exe to binmingw32-make.exe.

6 Chapter 2. Compiling

CHAPTER

THREE

DISCLAIMER

Large amounts of code and ideas have been... lent from other projects. Keeping all copyright notices in the code would
be unpractical, thus I have created a directoy called “licenses”. All copyright owners will get a place in this folder,
either by their own or their project’s name. Also pygrafix’s license can be found there.

Modules:

7

pygrafix Documentation, Release 0.0.1

8 Chapter 3. Disclaimer

CHAPTER

FOUR

PYGRAFIX — GENERAL PYGRAFIX
FUNCTIONS

This module is only there to group all the other modules, and for getting metadata about pygrafix.

pygrafix.get_version()
Returns a tuple of three ints containing the current pygrafix version in the format (major, minor, revision).

9

pygrafix Documentation, Release 0.0.1

10 Chapter 4. pygrafix — General pygrafix functions

CHAPTER

FIVE

PYGRAFIX.DRAW — FUNCTIONS FOR
DRAWING SHAPES

This module allows you to draw simple shapes like lines and polygons.

pygrafix.draw.line(start_point, end_point[, color[, width[, edge_smoothing[, blending]]]])
This function draws a line between start_point and end_point. Both points must have the form (x, y). color
must have the form (red, green, blue[, alpha]) with all components 0 <= c <= 1. blending can be any of “add”,
“multiply”, “mix” or None.

The defaults are an opaque white line, 1 pixel wide, with no smoothing and mix blending.

pygrafix.draw.rectangle(position, size[, color[, edge_smoothing[, blending]]])
Draws a filled rectangle. position must be given in the form (x, y), size in the form (width, height). color must
have the form (red, green, blue[, alpha]) with all components 0 <= c <= 1. blending can be any of “add”,
“multiply”, “mix” or None.

The defaults are an opaque white rectangle, with no smoothing and mix blending.

pygrafix.draw.rectangle_outline(position, size[, color[, width[, edge_smoothing[, blending]]
]])

Draws the outline of a rectangle. position must be given in the form (x, y), size in the form (width, height). width
is a number specifying the width of the line used. The thickness of the line moves inward, so the total size of
the outline is still given by size, and not a combination of size and width. color must have the form (red, green,
blue[, alpha]) with all components 0 <= c <= 1. blending can be any of “add”, “multiply”, “mix” or None.

The defaults are an opaque white rectangle, with no smoothing and mix blending.

pygrafix.draw.polygon(vertices[, color[, edge_smoothing[, blending]]])
This function draws a polygon with the given vertices. vertices must be a list of (x, y) tuples. At least 3 vertices
must be given. color must have the form (red, green, blue[, alpha]) with all components 0 <= c <= 1. blending
can be any of “add”, “multiply”, “mix” or None.

The defaults are an opaque white polygon, with no smoothing and mix blending.

pygrafix.draw.polygon_outline(vertices[, color[, width[, edge_smoothing[, blending]]]])
This function draws the outline of a polygon with the given vertices. vertices should be a list of (x, y) tuples. At
least 3 vertices must be given. color must have the form (red, green, blue[, alpha]) with all components 0 <= c
<= 1. blending can be any of “add”, “multiply”, “mix” or None.

The defaults are an opaque white 1 pixel outline, with no smoothing and mix blending.

11

pygrafix Documentation, Release 0.0.1

12 Chapter 5. pygrafix.draw — Functions for drawing shapes

CHAPTER

SIX

PYGRAFIX.IMAGE — WORKING WITH
IMAGE FILES

This module is used for loading images into a format pygrafix can understand.

pygrafix.image.load(filename[, file[, decoder]])
Loads an image from a file. If file is passed filename will be used as a hint for the filetype. Optionally you can
specify a decoder argument which will be used for decoding the image, for more information about decoders
read pygrafix.image.codecs. Returns a Texture object.

class pygrafix.image.Texture(internal_texture[, region])
Creates a Texture object from an InternalTexture object. Normally you shouldn’t have to create
Texture objects yourself, use load() instead. The optional region argument is the region to use, this defaults
to (0, 0, internal_texture.width, internal_texture.height).

width
The width of the texture. Note that when the region attribute is set that this will return the width of the
region. To get the actual texture width use internal_texture.width. Read-only.

height
The height of the texture. Note that when the region attribute is set that this will return the height of the
region. To get the actual texture width use internal_texture.height. Read-only.

region
A tuple in the form (x, y, width, height) that describes a region of the internal texture that gets represented
by this texture. Read-write.

internal_texture
The internal texture used for this texture. Read-only.

copy([lazycopy])
Returns a copy of this texture. If lazycopy is True this function equals texture.get_region(0, 0,
texture.width, texture.height). lazycopy is False by default.

get_region([x[, y[, width[, height]]]])
Returns a Texture object that represents a region of this texture, starting (x, y) pixels from the topleft of
this texture, spanning (width, height) pixels. Any changes to the original texture will be represented in this
region too, use texture.copy().get_region(...) if that’s undesired behaviour.

class pygrafix.image.InternalTexture(imgdata)
Creates a InternalTexture object from an ImageData object. Normally you shouldn’t have to create
InternalTexture objects yourself, use load() instead.

width
The width of the texture. Read-only.

13

pygrafix Documentation, Release 0.0.1

height
The height of the texture. Read-only.

class pygrafix.image.ImageData(width, height, format, data)
The format used to represent raw image data. format can be any of “RGBA”, “RGB”, “LA”, “A”. Data must be
bytes data given in the format described. Only 8-bit channels are supported.

14 Chapter 6. pygrafix.image — Working with image files

CHAPTER

SEVEN

PYGRAFIX.IMAGE.CODECS —
MANAGING CODECS

This module is used for managing codecs to be used by pygrafix. pygrafix supports a few formats out of the box, but
by adding image codecs it’s possible to add more codecs for any format.

exception pygrafix.image.codecs.ImageDecodeException
The error raised when decoding an image fails.

exception pygrafix.image.codecs.ImageEncodeException
The error raised when encoding an image fails.

pygrafix.image.codecs.get_decoders([filename])
Return all decoders that could possibly decode the format described by the extension of filename. If filename is
not given it returns all decoders.

pygrafix.image.codecs.get_encoders([filename])
Return all encoders that can encode the format described by the extension of filename. If filename is not given
it returns all encoders.

pygrafix.image.codecs.add_decoder(decoder)
Adds decoder to pygrafix. A decoder must support two methods: get_extensions() and decode(file,
filename).

get_extensions() must return an iterable of extensions the decoder can decode, for example:

def get_extensions(self):
return (".bmp", ".png")

decode(file, filename) must attempt to decode the file object file. filename is a hint regarding the
containing file type (which can be a full filename or just the extension). If, for any reason, the decoder is not
able to decode file it must raise ImageDecodeException. If it succeeds it must return an ImageData
object containing the decoded data.

pygrafix.image.codecs.add_encoder(encoder)
Adds encoder to pygrafix. An encoder must support two methods: get_extensions() and
encode(imgdata, file, filename).

get_extensions() must return an iterable of extensions the encoder can encode, for example:

def get_extensions(self):
return (".bmp", ".png")

encode(imgdata, file, filename) must encode the data found in imgdata into the file object file.
filename is a hint into which file type the data must be encoded (which can be a string containing the full filename
or just the extension). imgdata is passed as an ImageData object.

15

pygrafix Documentation, Release 0.0.1

16 Chapter 7. pygrafix.image.codecs — Managing codecs

CHAPTER

EIGHT

PYGRAFIX.RESOURCE — MANAGING
RESOURCE LOCATIONS

This module is used for managing resource locations from which pygrafix can load resources.

pygrafix.resource.add_location(location)
Adds a resource location to pygrafix. These resource locations are used in the functions get_path(),
get_file(), get_location() and exists() as well as other resource loading functions throughout
pygrafix (for example pygrafix.image.load()).

The location variable can be a string containing a path, a string containing the path to a zipfile as well as a
custom object.

If a custom object is passed it must support at least the following methods:

class CustomLocation:
tries to open filename in this location with the correct mode
if for any reason this fails or the resource is not found raise IOError
def open(self, filename, mode = "rb"):

pass

return True if filename exists in this location, otherwise False
def isfile(self, filename):

pass

return an absolute path to filename in this location, whether it exists or not
if absolute paths are not applicable return anything you find appropriate, but don’t raise an exception
def getpath(self, filename):

pass

pygrafix.resource.get_path(resource)
resource is a string containing the filename of a resource. This function will look through all resource locations
and return an absolute path to the resource. IOError is raised if the resource was not found.

Note: an absolute path is not always available/appropriate, for example a path into a zipfile. Use this function
for printing purposes only, or with care.

pygrafix.resource.get_file(resource)
resource is a string containing the filename of a resource. This function will look through all resource locations
for the file and return a file object opened in binary reading mode. IOError is raised if the resource was not
found.

pygrafix.resource.get_location(resource)
resource is a string containing the filename of a resource. This function will look through all resource locations
for the resource, and if it’s found the function will return the containing location.

17

pygrafix Documentation, Release 0.0.1

pygrafix.resource.exists(resource)
resource is a string containing the filename of a resource. This function will look through all resource locations
and return True if the resource exists, otherwise False.

pygrafix.resource.get_script_home()
Returns a string containing the directory of the program entry module.

For ordinary Python scripts, this is the directory containing the __main__ module. For executables created with
py2exe the result is the directory containing the running executable file. For OS X bundles created using Py2App
the result is the Resources directory within the running bundle.

If none of the above cases apply and the file for __main__ cannot be determined the working directory is
returned.

pygrafix.resource.get_settings_path(name)
Returns a string containing a directory to save user preferences.

Different platforms have different conventions for where to save user preferences, saved games, and settings.
This function implements those conventions. Note that the returned path may not exist: applications should use
os.makedirs() to construct it if desired.

On Linux, a hidden directory name in the user’s home directory is returned.

On Windows (including under Cygwin) the name directory in the user’s Application Settings directory
is returned.

On Mac OS X the name directory under ~/Library/Application Support is returned.

18 Chapter 8. pygrafix.resource — Managing resource locations

CHAPTER

NINE

PYGRAFIX.SPRITE — FAST SPRITES

This module gives you fast sprites that can be moved, rotated, scaled and colored.

class pygrafix.sprite.Sprite(texture)
Creates a new sprite with the texture texture. This is the core rendering functionality of pygrafix. A sprite can be
moved, rotated (around a point within the sprite), scaled (with different scales for x and y), flipped and colored.
All of this only affects the sprite, not the texture that it uses. Multiple sprites can be created off of one texture.

x
The horizontal position of the sprite.

y
The vertical position of the sprite.

position
A property which can be used for reading/modifying x and y at the same time. For example:

>>> print(sprite.x, sprite.y, sprite.position)
5, 10, (5, 10)
>>> sprite.position = (60, 7)
>>> print(sprite.x, sprite.y, sprite.position)
60, 7, (60, 7)

anchor_x
The horizontal position of the sprites’ anchor.

anchor_y
The vertical position of the sprites’ anchor.

anchor
A shorthand for assigning to anchor_x and anchor_y at the same time.

The anchor of a sprite is used to determine how to place a sprite, even when scaled and rotated. The anchor
of a sprite also rotates and scales with the sprite. Finally when a sprite is rendered pygrafix makes sure
that the anchor point of the sprite always lies on the sprites’ position.

rotation
The rotation of the sprite. The sprite will be rotated around the anchor.

width
Shorthand for sprite.texture.width. Read-only.

height
Shorthand for sprite.texture.height. Read-only.

size
Shorthand for (sprite.width, sprite.height). Read-only.

19

pygrafix Documentation, Release 0.0.1

draw([scale_smoothing[, edge_smoothing[, blending]]])
Draws the sprite as defined by it’s properties. scale_smoothing is a boolean indicating whether the sprite
should be drawn nicely smoothed when scaled or pixelated. blending can be any of “add”, “multiply” and
“mix”, or None to disable blending.

pygrafix.sprite.draw_batch(sprites[, preserve_order[, scale_smoothing[, edge_smoothing[,
blending]]]])

Draws a list of sprites in one go. This is the main rendering function of pygrafix, and depending on the ap-
plication this function will do the most work. This function draws each sprite in sprite with the attributes
scale_smoothing, edge_smoothing and blending as describute in Sprite.draw().

This function is the most efficient when a lot of sprites use the same InternalTexture and sprites with the
same texture are grouped together. By default no particular order of drawing is guaranteed by this function, for
speed purposes sprites are sorted on texture. If you absolutely need a specific order of drawing, pass True to
preserve_order (by default it’s False) or consider slicing up your drawing in smaller batches.

20 Chapter 9. pygrafix.sprite — Fast sprites

CHAPTER

TEN

PYGRAFIX.WINDOW — MANAGING
WINDOWS

This module allows you to open and manage your windows to be used for pygrafix.

class pygrafix.window.Window([width[, height[, title[, fullscreen[, resizable[, refresh_rate[, vsync[,
bit_depth]]]]]]]])

Creates a new window. width and height give the size of the new window, title is a string for the window caption,
fullscreen is a boolean indicating whether the new window is fullscreen or not. resizable is a boolean indicating
whether the new window is resizable by the user. refresh_rate is the refresh rate in Hz (only used in fullscreen).
vsync is a boolean indicating whether vsync should be enabled. bit_depth is a tuple in the form (red, green, blue,
alpha) indicating how much bits should be used for each channel.

If width is zero (the default), it will be calculated as width = (4/3) * height, if height is not zero. If
height is zero (the default), it will be calculated as height = (3/4) * width, if width is not zero. If both
width and height are zero, width will be set to 640 and height to 480.

If no title is given the default title “pygrafix window” is chosen. The default value for resizable is False. If
refresh_rate is zero (the default) the system’s refresh rate will be used. The default value for vsync is True. If
bit_depth is not given pygrafix will choose the best values.

pygrafix only supports double-buffered windows. This means that all drawing gets done on the back buffer and
the user only ever sees the front-buffer. This is done to prevent half-done frames from showing up to the user.
You swap the front and the back buffer by calling flip().

All attributes are read-write unless said otherwise.

width
The width of the screen in pixels.

height
The height of the screen in pixels.

size
The size of the window in the form (width, height).

position
The position of the window in the form (x, y). x and y are measured in pixels relative to the topleft of the
screen.

resizable
A boolean indicating if the window is resizable by the user (you can always resize the window from the
code). Read-only.

refresh_rate
The refresh rate of the window. Only applicable in full-screen. Read-only.

21

pygrafix Documentation, Release 0.0.1

vsync
A boolean indicating whether vsync is enabled or not.

mouse_cursor
Defines the cursor mode. Legal modes are “normal”, “hidden” and “captured”. In normal mode the reg-
ular hardware cursor is used and all mouse position functions work normally. In hidden mode everything
is the same, except the cursor is not shown. Captured mode is radically different, the cursor is hidden and
is not blocked by window boundaries. This last mode is commonly used for first-person-shooters.

key_repeat
A boolean indicating whether key repeating is enabled or not.

title
The title of this window.

fullscreen
A boolean indicating whether the window is fullscreen or not.

close()
Closes the window.

is_open()
Returns whether the window is open or not.

poll_events()
Calling this will pump through new window events like keypresses. Call this at least once per frame.

wait_events()
Does the same as the poll_events() but sleeps the process until an event is triggered.

minimize()
Minimizes the window.

restore()
Restores the window.

has_focus()
Returns a boolean indicating whether this window has focus.

is_minimized()
Returns a boolean indicating if the window is minimized.

switch_to()
Makes this window the active window (the window that is drawn on).

flip()
This flips the front and the back and makes everything that has been drawn visible to the user. Call this
once per frame.

get_mouse_position()
Returns the position of the mouse relative to the topleft of the screen in the form (x, y).

is_key_pressed(key)
Returns True if key is pressed, else False. key can be a key constant from pygrafix.window.key or
an alphanumeric string of length one (for example “A”).

is_mouse_button_pressed(button)
Returns True if button is pressed, else False. button can be a mouse button constant from
pygrafix.window.mouse.

clear([red[, green[, blue]]])
Clears the whole screen to the given color.

22 Chapter 10. pygrafix.window — Managing windows

pygrafix Documentation, Release 0.0.1

get_screen_data([position[, size[, buffer]]])
Returns an ImageData object containing the current contents of the screen. You can select a sub-part
of the screen with position and size. Position must have the form (x, y) and size (width, height). The
optional argument buffer may be “front” or “back” and defaults to “front”. The front buffer is what the
user currently sees, the back buffer is the buffer you do your drawing on.

save_screenshot(filename[, file])
Saves a screenshot of this window into a file. If file is given filename will be used as a hint for the filetype.

get_fps()
Returns the frames per second. This value is calculated from how often flip() gets called with an
algorithm that slightly smoothes out FPS changes.

pygrafix.window.get_active_window()
Returns the active window. The active window is the window any draw calls will target.

pygrafix.window.get_open_windows()
Returns a list of all opened windows.

pygrafix.window.get_video_modes()
Returns a list of all legal video modes in the form (width, height, (redbits, greenbits, bluebits)).

pygrafix.window.get_desktop_video_mode()
Returns the desktop video mode in the form (width, height, (redbits, greenbits, bluebits)).

23

pygrafix Documentation, Release 0.0.1

24 Chapter 10. pygrafix.window — Managing windows

CHAPTER

ELEVEN

PYGRAFIX.WINDOW.KEY — KEY
CONSTANTS

This module contains key constants that are used with pygrafix.window.

pygrafix.window.key._0
pygrafix.window.key._1
pygrafix.window.key._2
pygrafix.window.key._3
pygrafix.window.key._4
pygrafix.window.key._5
pygrafix.window.key._6
pygrafix.window.key._7
pygrafix.window.key._8
pygrafix.window.key._9

Number constants.

pygrafix.window.key.A
pygrafix.window.key.B
pygrafix.window.key.C
pygrafix.window.key.D
pygrafix.window.key.E
pygrafix.window.key.F
pygrafix.window.key.G
pygrafix.window.key.H
pygrafix.window.key.I
pygrafix.window.key.J
pygrafix.window.key.K
pygrafix.window.key.L
pygrafix.window.key.M
pygrafix.window.key.N
pygrafix.window.key.O
pygrafix.window.key.P
pygrafix.window.key.Q
pygrafix.window.key.R
pygrafix.window.key.S
pygrafix.window.key.T
pygrafix.window.key.U
pygrafix.window.key.V
pygrafix.window.key.W
pygrafix.window.key.X

25

pygrafix Documentation, Release 0.0.1

pygrafix.window.key.Y
pygrafix.window.key.Z

Alphabetic constants.

pygrafix.window.key.F1
pygrafix.window.key.F2
pygrafix.window.key.F3
pygrafix.window.key.F4
pygrafix.window.key.F5
pygrafix.window.key.F6
pygrafix.window.key.F7
pygrafix.window.key.F8
pygrafix.window.key.F9
pygrafix.window.key.F10
pygrafix.window.key.F11
pygrafix.window.key.F12
pygrafix.window.key.F13
pygrafix.window.key.F14
pygrafix.window.key.F15
pygrafix.window.key.F16
pygrafix.window.key.F17
pygrafix.window.key.F18
pygrafix.window.key.F19
pygrafix.window.key.F20
pygrafix.window.key.F21
pygrafix.window.key.F22
pygrafix.window.key.F23
pygrafix.window.key.F24
pygrafix.window.key.F25

F-key constants.

pygrafix.window.key.KP_0
pygrafix.window.key.KP_1
pygrafix.window.key.KP_2
pygrafix.window.key.KP_3
pygrafix.window.key.KP_4
pygrafix.window.key.KP_5
pygrafix.window.key.KP_6
pygrafix.window.key.KP_7
pygrafix.window.key.KP_8
pygrafix.window.key.KP_9
pygrafix.window.key.KP_DECIMAL
pygrafix.window.key.KP_DIVIDE
pygrafix.window.key.KP_MULTIPLY
pygrafix.window.key.KP_SUBTRACT
pygrafix.window.key.KP_ADD
pygrafix.window.key.KP_ENTER
pygrafix.window.key.KP_EQUAL

Keypad constants.

pygrafix.window.key.RIGHT
pygrafix.window.key.LEFT
pygrafix.window.key.DOWN
pygrafix.window.key.UP

Directional keys.

26 Chapter 11. pygrafix.window.key — Key constants

pygrafix Documentation, Release 0.0.1

pygrafix.window.key.COMMA
pygrafix.window.key.PERIOD
pygrafix.window.key.SEMICOLON
pygrafix.window.key.SLASH
pygrafix.window.key.BACKSLASH
pygrafix.window.key.APOSTROPHE
pygrafix.window.key.GRAVE_ACCENT
pygrafix.window.key.LEFT_BRACKET
pygrafix.window.key.RIGHT_BRACKET
pygrafix.window.key.MINUS
pygrafix.window.key.EQUAL

Punctation and special symbol keys.

pygrafix.window.key.SPACE
pygrafix.window.key.ENTER
pygrafix.window.key.TAB

Whitespace keys.

pygrafix.window.key.CAPS_LOCK
pygrafix.window.key.SCROLL_LOCK
pygrafix.window.key.NUM_LOCK

Lock keys.

pygrafix.window.key.ESCAPE
pygrafix.window.key.BACKSPACE
pygrafix.window.key.INSERT
pygrafix.window.key.DELETE
pygrafix.window.key.PAGE_UP
pygrafix.window.key.PAGE_DOWN
pygrafix.window.key.HOME
pygrafix.window.key.END
pygrafix.window.key.PRINT_SCREEN
pygrafix.window.key.PAUSE
pygrafix.window.key.MENU

Miscellaneous keys.

pygrafix.window.key.LEFT_SHIFT
pygrafix.window.key.LEFT_CONTROL
pygrafix.window.key.LEFT_ALT
pygrafix.window.key.LEFT_SUPER
pygrafix.window.key.RIGHT_SHIFT
pygrafix.window.key.RIGHT_CONTROL
pygrafix.window.key.RIGHT_ALT
pygrafix.window.key.RIGHT_SUPER

Modifier keys.

pygrafix.window.key.WORLD_1
pygrafix.window.key.WORLD_2

Non-US keys #1 and #2.

27

pygrafix Documentation, Release 0.0.1

28 Chapter 11. pygrafix.window.key — Key constants

CHAPTER

TWELVE

PYGRAFIX.WINDOW.MOUSE — MOUSE
CONSTANTS

This module contains mouse constants that are used with pygrafix.window.

pygrafix.window.mouse.LEFT
pygrafix.window.mouse.MIDDLE
pygrafix.window.mouse.RIGHT

Constants for respective the left, middle and right mouse button.

pygrafix.window.mouse.MOUSE1
pygrafix.window.mouse.MOUSE2
pygrafix.window.mouse.MOUSE3
pygrafix.window.mouse.MOUSE4
pygrafix.window.mouse.MOUSE5
pygrafix.window.mouse.MOUSE6
pygrafix.window.mouse.MOUSE7
pygrafix.window.mouse.MOUSE8

Constants for mouse button 1 through 8.

29

pygrafix Documentation, Release 0.0.1

30 Chapter 12. pygrafix.window.mouse — Mouse constants

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

31

pygrafix Documentation, Release 0.0.1

32 Chapter 13. Indices and tables

PYTHON MODULE INDEX

p
pygrafix, 9
pygrafix.draw, 11
pygrafix.image, 13
pygrafix.image.codecs, 15
pygrafix.resource, 17
pygrafix.sprite, 19
pygrafix.window, 21
pygrafix.window.key, 25
pygrafix.window.mouse, 29

33

	Introduction
	Why this project?
	Why Cython?
	On what external libraries does pygrafix rely?
	What are the core design goals?
	What other features might get added?
	What features will not get added?

	Compiling
	Compiling on Linux
	Compiling on Windows

	Disclaimer
	pygrafix — General pygrafix functions
	pygrafix.draw — Functions for drawing shapes
	pygrafix.image — Working with image files
	pygrafix.image.codecs — Managing codecs
	pygrafix.resource — Managing resource locations
	pygrafix.sprite — Fast sprites
	pygrafix.window — Managing windows
	pygrafix.window.key — Key constants
	pygrafix.window.mouse — Mouse constants
	Indices and tables
	Python Module Index

